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Abstract:  

In this paper we make further study on the data processing method of the dynamic measurement of thermal conductivity, an experiment designed by Nanjing University.  Two new methods are proposed and have been tested in processing our actual data, and result acquired by them is inspiring.  We also carry out further theoretical analysis (introducing the modification of heat leakage) as well as explanation on the quasi one-dimensional equation of thermal conduction and its solution, which are concerned in this experiment.
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Introduction:


This is an experiment designed on the base of one-dimensional equation of thermal conduction and it’s solution with the purpose of measuring thermal properties of materials.  The dynamic method, compared with conventional stable state method, reduces the relative error by substituting the measurement of thermo variables (e.g. temperature) for temporal ones such as time and frequency, which can be measured more accurately.  Our work inherits this idea and extends it to the field of data processing, where we take full advantage of Fourier analysis and improve the experiment greatly.
Theoretical analysis:


Let the cross-sectional area of the metal rod is A, the mass density is
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, and the thermal conductivity is
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.  The heat conducts in the quasi one-dimensional metal rod.  The diffusing coefficient 
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 is defined as
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The evolution of the thermal wave 
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 is described by the one-dimensional equation of thermal conduction known as 
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We are seeking the solution under the boundary condition
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 ,where T0 is room temperature, 
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and ω are amplitude and frequency of thermal wave,respectively.
Because this thermal system is complicated, we make some simplification in our model.  Firstly, the initial condition will not be taken into consideration in the case of a stable solution for it is not related with the initial temperature distribution.  The final distribution of the temperature is only determined by the boundary condition.  If we keep constant temperatures at each end of the rod, there will be a linear descent of temperature along it, which acts as a background in our experiment.  Assume that the variation of temperature at the hot tip can be described by a sine function, a thermal wave will appear with it’s amplitude declining along the rod.  As an approximation, we can neglect the minor oscillating component of the thermal wave at the far end so that the temperature there can still be taken as a constant.  Considering the equation of thermal function is linear, we can get the final 
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 by superposing the DC and AC solutions under their corresponding boundary conditions discussed above.

(1) Static boundary condition:


since     
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we obtain 
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(2) Oscillating boundary condition:



[image: image15.wmf]0

2

|e,

|,

it

xm

xl

TT

TT

w

-

=

=

ì

=×

í

=

î





[image: image16.wmf]0

0

T

T

t

=

=



Assume that the solution can be written as 
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and equation is 
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We get 
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Considering the assumption of attenuation, it’s nature to require 
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We have 
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Therefore 
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Finally, from (1) and (2) we get 
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Discussions about the experimental methods:


1. Old way:

In this method we are expected to acquire a monochromatic thermal wave with sufficient amplitude at first, then we record the time 
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 when the same peak passes two pyods with a distance of 
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, thus we get the velocity of the wave 
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For


[image: image29.wmf]2

2

π

a

l

w

=



[image: image30.wmf]Þ




[image: image31.wmf]w

a

l

×

=

×

=

2

f

V

,

So


[image: image32.wmf](

)

222

2

21

4

π4π4π

VcVcTcTL

f

tt

rrr

l

===×

-

, and it’s easy to calculate 
[image: image33.wmf]l

 upon the substitution of the values known variables in this formula.

The primary shortcoming of this method is that the data is not fully used, and even the several data used are picked manually with great error.  To visualize our point, let’s make some error analysis on this method below.

Assume that the period T=180 s (actually we have 60 s、120 s、180 s and 240 s four choices on the panel), and the relative error of manually picking a peak is 1%, then both of 
[image: image34.wmf]1

t

 and 
[image: image35.wmf]2

t

 will have an absolute error of about 1.8 s.  Considering that
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, which is the same as that of 
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, will be up to about 20%!  So it is not surprising that it’s hard to obtain an accurate result in this way.



As discussed above, the old method
1. demands a monochromatic thermal wave with sufficient amplitude;

2. can not make the best of the data;

3. leads to excessive error for picking the data manually. 
2. Our methods:
Our methods are well designed against those shortcomings.  Through these new methods, we can

1. liberalize the restriction to the thermal wave;

2. promote the usage of data;

3. offer a standard manipulation with the assistance of a computer.

These new methods are described in detail below.

Method I: (a statistical method that promotes the usage of data and avoids picking data manually）


Choose two monochromatic thermal waves 
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 with sufficient amplitude as input and output respectively.  Apply Fourier analysis on 
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 to find the frequency 
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 (abscissa of the highest peak in the frequency domain) of 
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, then calculate the heating period 
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 of the heater.  Statistical method is used in order to calculate the interval of the wave shapes between 
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 accurately.  Therefor we utilize a function 
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, where 
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 is a functionelle that calculates the variation of 
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, and the definition domain of 
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 is [0,T].  Because 
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 are both functions with the period T, it is certain that 
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 has and only has one minimum in [0,T].  Suppose that 
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is the interval we wanted.  Considering that this 
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 is a statistical result obtained from all the data, this method has greater confidence, robustness and certainty compared with the old one in which we just manually select several peak points (9 points according to reference [1]).


Fig.1 is an example showing the use of method I in actual data processing.
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Fig.1.  The result of our program using method I.  In this example we take the 2nd and 4th line to calculate the thermal conductivity of copper .  The result is shown on the panel on the right.


It is clear that the result is rather accurate.  More meaningfully, the usage of data here is much higher than before, and the uncertainty of the result drops steeply consequently.
Method II: (thoroughly improve the data processing of this experiment by Fourier analysis）

Arbitrarily choose two thermal fluctuation 
[image: image59.wmf])

(

1

t

y

 and 
[image: image60.wmf])

(

2

t

y

 as input and output respectively.  The only requirement to them is sufficient amplitude (to depress the disturbance of non-conductive thermal noise).  In this method our physical model is input
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quasi one-dimensional thermal wave dispersion system
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output.  According to the equation of thermal conduction, 
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Our quasi one-dimensional dispersion system is the metal rod between two pyods in this experiment.  The dispersion relation is 
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.  Suppose 
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.  According to the linear property and the Shift Theorem, we have:
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Suppose the distance between the two pyods is L, the decay factor will be 
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.  According to the dispersion relation, we have 
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, the formula for thermal conductivity is
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Theoretically, the 
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 of a given material is a constant independent of 
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.  Actually, the 
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 comes out to be a distribution in a certain domain (the reason will be given later on), so we must take the peak of the distribution 
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 as the thermal conductivity of the material.


In order to improve the precision further in operation, we take advantage of “successive differences method” to kill the common-mode noise generated by the common fluctuation of temperature and to reduce the proportion of constant signal.  Actually we select three equidistant pyods (suppose the spacing interval is L) as our data source, thus we get:
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Then calculate the difference of temperature from adjacent pyods.
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Now let 
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Apply Fourier analysis on 
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according to the Shift Theorem, we have
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Given consideration to the dispersion relation (
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), the most remarkable advantage of this method is that we no longer need any pure monochromatic wave.  Theoretically, we can obtain accurate result from any data with arbitrary shape and length.  Furthermore, in this method we carry out our analysis on the sample in a broader frequency-domain, thus we actually examine more thermo properties of the material and make a confirmation on the dispersion relation formula as well.  This method can also benefit us on apparatus designing, that is, we can set the thermometer much nearer to the hot tip to get stronger thermo fluctuation against background noise without fearing that the undecayed high-frequency component will destroy the purity of the wave shape, or at least we can make better use of the metal role and minimize the size of the apparatus.


To visualize the essential advantage of this method compared to the old one in which we don’t make any analysis in the frequency domain, we make a simulation as below.


Fig.2 is a superposition of a series of thermal waves, or the solutions to the equation of thermal conduction, with different frequencies. The actual wave shape before the high frequency component decays is just alike.
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Fig.2.  Superposition of waves with different frequencies.

From the viewpoint of the old method, the fluctuation in Fig.2 is too bad to obtain a result from.  While according to Fourier’s theory, any bad fluctuation is composed by a series of pure monochromatic waves.  With this point of view, a piece of bad data now comes out to be a series of good data.  Thus we now can obtain a series of results 
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 we obtained from actual data is not a constant as it theoretically should be.  The reason lies in three factors as below.

1. The sample rate is not infinitely high, so 
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 is not credible when 
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 is too high;

2. The data is not infinitely long, so 
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 is not credible when 
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 is too low;

3. The Discrete Fourier Transformation (DFT) has a limit of precision itself.

Therefore, the meaningful 
[image: image110.wmf]l

 only exists in a certain domain 
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 with a peak at 
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, which is just the thermal conductivity we wanted.  
Fig.3 shows an example of this distribution in our simulation.  The result is in accordance with the value of 
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 we set to generate the data, and for different simulations (with the fluctuation randomly superposed), the relative error of the result is below 1%.
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Fig.3.  The distribution of 
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, which we set to be 0.6 and get 0.599 through our analysis

In Fig.4 we give an example of actual ‘bad’ data, and in Fig.5 we show the distribution of 
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 derived from it, which is not so regular but still has a distinct peak.
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Fig.4.  An actual ‘bad’ data
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Fig.5.  The distribution of 
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 derived from the data in Fig.4.
Finally we obtain 
[image: image122.wmf]41

.

1

2

»

a

L

，
[image: image123.wmf]242

l

Þ»

J/(k•m•s) for Al.

There are still many problems to be studied in this experiment.  Here we will make some theoretical deduction involving heat leakage and tentatively locate the problems to be solved.

Suppose that the heat leakage from the metal rod of unit length with temperature T to the environment with temperature T0 in unit interval is 
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 is a small modification,   we  can take           
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 as the approximation to the new solution.  It’s obvious that this solution will regress to the former one (
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 not only influences the decay of amplitude but also changes the dispersion relation (this is the essential difference), so new methods is to be find to substitute all the three methods above, which are no longer applicable.
Conclusions:
In this paper we have made further study on the data processing method of the dynamic measurement of thermal conductivity, an experiment designed by Nanjing University.  Two new methods have been proposed and tested in processing our actual data, and result acquired by them is inspiring.
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