第8章 光在晶体中的传播

8.1 晶体双折射

- 晶体简介 双折射现象
- 单轴晶体中 0 光、e 光波面 晶体中的惠更斯作图法
- 两个重要情形 小结

birefringence,ordinary light,extraordinary light,uniaxial crystal,biaxial crystal,principal section of crystal,principal plane of crystal.

● 晶体简介

外形有一定规则性或对称性,

内部 原子排列 有序、周期性,

规则有序结构 导致 物理性质的各向异性

——热传导的各向异性,

电导、极化、磁化的各向异性,

光速的各向异性。

光在晶体中的传播

— 光在各向异性介质中的传播。*《固体物理》、〈晶格几何理论〉表明:

7种晶系——14种晶格、32种点群,

▲ 单轴晶体: 三角晶系, 四角晶系, 六角晶系, 如 冰洲石 CaCO₃ —— 方解石之一种,

红宝石、石英、・・・

- ▲ 双轴晶体: 单斜晶系, 三斜晶系, 正交晶系, 如 蓝宝石、云母、···
- ▲ 立方晶系——各向同性介质,

如 食盐 NaCl 晶粒。

图 8-1

图 8-2 冰洲石双折射现象的图片

图 8-3

* 光轴

单轴晶体,存在一个特殊方向 — *兆*, 光沿光轴方向传播不发生双折射。
冰洲石 光轴方向 — 平行于两个钝棱角的 对角线方向。 (102⁰, 102⁰, 102⁰)
o 光波面与 e 光波面 — **多更新模型**。

• 体内一点源, 沿任意方向 r 考察波 传播行为,应分别

o 振动,光矢量 Ē_e(t) ⊥ 主平面(Z,r);
• 振动,光矢量 Ē_e(t) //主平面(Z,r).

冰洲石(负晶体) 石英(正晶体) $v_e(\xi) \ge v_o$, 或 $n_e(\xi) \le n_o$, $n_e(\xi) \ge n_o$.

$$(n=\frac{c}{v})$$

(1) o 振动传播规律 ── 各向同性, o 光波面∑_o(t) 为球面,
(2) e 振动传播规律 ── 各向异性, e 光波面∑_e(t) 为旋转椭球面, 转轴为光轴;两套波面相切于光轴方向。

* 主折射率 n_o 与 n_e ,

对于 e 光,	冰洲石	石英
$\int n_e(0) = n_o,$	1.65836	1.54425
$\int n_e(\pi/2) = n_e$	1.48641	1.55336
	$\sim10\%$,	\sim 5‰,

对于 负晶体

 $n_o \geq n_e(\xi) \geq n_e$,

对于 正晶体

 $n_o \leq n_e(\xi) \leq n_e$.

如何 由主折射率 (n_o, n_e) 导出 $n_e(\xi)$, 留待下节。

其实, 主折射率有3个

 (n_x, n_y, n_z) ,

对于单轴 $n_x = n_y = n_e$, $n_z = n_o$.

如何由主折射率 n_o 、 n_e ,导出 e 光沿任意 方向 $n_e(\xi)$ 函数,正是下一节——单轴晶体的一 组光学公式,要解决的问题。

* 深化认识 晶体光学的各向异性

表观认识:

 n_o , $n_e(\xi)$, n_e

或 $v_o, v_e(\xi), v_e$ $v_e(\xi) = \frac{c}{n_e(\xi)}$. 进一步认识:着眼于横振动 \vec{E}_o 、 \vec{E}_e 的方向 ——与光轴 \vec{z} 的取向不同,因而有不同的传 播速度 —— 更深入地反映了光波与晶体 的相互作用;传播速度的各向异性反映了这 种相互作用的各向异性。

微观上的次波面,它们的包倍面 ——宏观波面。

图 8-6

这里是

主截面 (\vec{Z}, \vec{N}_s) 与入射面 (\vec{r}_1, \vec{N}_s) 重合,

于是 主平面 (\vec{Z}, \vec{r}_o) 或 (\vec{Z}, \vec{r}_e) 与前者均重合。 否则 人手工描绘困难;电脑绘制也许可为。

图 8-7

* 甚至,可能出现

图 8-8

总之,(1) o 光满足通常的折射定律(Snell 形式), e 光的折射方向不具有 Snell 定律的形式。

> (2) o 光线与其波面Σ。正交,而 e 光 线r_e与其波面不正交,或者说,一般 情形下, e 光波的射线方向与其波 面法线方向并不一致。

* 例外的一种情况:

(光轴⊥入射面),即 主截面⊥入射面.
 有 n₁ sin i₁ = n₀ sin i₀,
 且 n₁ sin i₁ = n_e sin i_e 成立.

- 两个重要情形 —— 智为厚度均匀晶片
 - (1) 光轴平行表面、光束正入射,

图 8-10 晶片厚度均匀、光轴平行 表面且光束正入射情形

可见, o 光、e 光出射方向一致, 表观上无 双折射, 却内涵双折射, 两者在体 内传播的光程不等 (*n*₀*d* − *n*_e*d*)≠0.

这将被应用于 产生或检验 圆偏光、椭圆偏光。

(2) 光轴任意、光束正入射,

图 8-11

可见,体内 Σ_e 面法线方向 N_e 与射线方向 r_e 不一 致,两者分离角 α ;而 Σ_e 面依然// 晶片表面, 不论光轴如何取向——这有明显的实用意义。

图 8-12

注意 (1)射线 \vec{r}_e 方向 即是

能流方向,扰动传播方向,相位传播方向。

(2) 波面 Σ_e 法线 \vec{N}_e 方向 在这里

仅具有几何意义。

● 小结

图 8-13 单轴晶体光学中的 点、线、面和角

综上所述,对应于单轴晶体表面的一个入 射点,计有6个方向、4个面和3个角,值 得人们注意,参见图8.8:

6 个方向:入射光线方向 r₁,表面法线方向 N_s,晶体光轴方向 z,体内 o 光 射线方向 r_o,体内 e 光射线方向 r_e,体内 e 光波面 Σ_e法线方向 N_e;
4 个面:入射面(r₁,N_s),晶体主截面(N_s,z), o 光主平面(r_o,z), e 光主平面 (r_e,z);
3 个角: r_e与光轴 z之夹角 ζ, N_e与光轴 z

3 个用: r_e 与光牰 z 乙兴用 ς , N_e 与光牰 z之夹角 heta , \overline{r}_e 与 \overline{N}_e 之夹角 lpha .

8.2 单轴晶体光学公式 双轴晶体

- 射线速度 \vec{v}_r 和波法向速度 \vec{v}_N
- 速度各向异性公式
- 速度倒数面 —— 折射率椭球面
- 来自电磁理论的补充内容
- 双轴晶体简介
- 例题4 —— 求斜入射斜光轴时 e 光折射角

● \vec{v}_r 、 \vec{v}_N 定义与意义

图 8-14 e 光波面的运动图像

考察波面Σ_e(t) — 随时间在空间的推移。 出发点 — 惠更斯模型。

 $\Sigma_{e}(t)$ 为旋转椭球面,其主(轴)速度为

 $(v_x, v_y, v_z) = (v_e, v_e, v_o)$,

即 (xz) 面内, 椭圆方程

$$\frac{x^2}{a^2} + \frac{z^2}{b^2} = 1$$

其中 $a = v_e t$, $b = v_o t$. 提取"速度"概念, $\Sigma_e(t) \rightarrow \Sigma_e(t + \Delta t)$. (1)射线速度 $\vec{v}_r \equiv \frac{d\vec{r}}{dt}$, 具有物理意义。 (2)法线速度 $\vec{v}_N \equiv \frac{d\vec{r}_N}{dt}$, 具有几何意义。

* \vec{v}_r 与 \vec{v}_N 之关系

对场点P 而言,

$$\begin{cases} v_N(p) = v_r(p) \cdot \cos \alpha , \qquad \alpha = (\xi - \theta) .\\ \tan \theta = \frac{n_e^2}{n_o^2} \tan \xi . \end{cases}$$

可见, (1) $v_N \leq v_r$,

(2)
$$\xi \not \downarrow 0^{\circ} \longrightarrow \pi/_{2},$$

有 θ $0^{\circ} \longrightarrow \pi/_{2},$
 α $0^{\circ} \longrightarrow 0^{\circ}.$

其间出现极大值 α_M — 最大分离角, 当 $\tan \theta_0 = \frac{n_e}{n_0}$ 时,出现 α_M ,满足 $\tan \alpha_N = \frac{n_e^2 - n_e^2}{n_0}$

$$\tan \alpha_M = \frac{n_o - n_e}{2n_o n_e}.$$

数字例题, 钠黄光,冰洲石. n_o = 1.65836, n_e = 1.48641,

有
$$\theta_0 \approx 42^\circ$$
, (41.87°)
 $\alpha_M \approx 7^\circ$, (6.95°)

* 导出θ--*ξ*关系 (备考):

$$\frac{x^2}{a^2} + \frac{z^2}{b^2} = 1,$$
$$\frac{1}{a^2} 2xdx + \frac{1}{b^2} 2zdz = 0,$$

于是,切线斜率:

而其法线斜率,若以θ角表示,当为

$$\tan \theta = -\frac{dz}{dx}$$

$$= \frac{n_e^2}{n_o^2} \tan \xi . \quad
証毕.$$

● 速度各向异性V_r(ξ)公式

由 $r^2 = x^2 + z^2$,以改写波面椭圆方程为 极坐标形式,

$$r^{2}(\xi) = \frac{a^{2}b^{2}}{a^{2}\cos^{2}\xi + b^{2}\sin^{2}\xi}$$
$$= \frac{v_{o}^{2}v_{e}^{2}}{v_{e}^{2}\cos^{2}\xi + v_{o}^{2}\sin^{2}\xi} \cdot t^{2}$$

,

于是,射线速度各向异性公式为 $v_r^2(\xi) = \left(\frac{r(\xi)}{t}\right)^2 = \frac{v_o^2 v_e^2}{v_e^2 \cos^2 \xi + v_o^2 \sin^2 \xi}.$

它符合椭圆方程。

速度各向异性 $v_N(\theta)$ 公式 据 $\begin{cases} v_N^2(\theta) = v_r^2(\xi) \cdot \cos^2(\xi - \theta) \\ \tan \theta = \frac{n_e^2}{n_o^2} \tan \xi \end{cases}$,

可以导出

$$v_N^2(\theta) = v_o^2 \cos^2 \theta + v_e^2 \sin^2 \theta$$

它不符合椭圆方程。

* 导出
$$v_N(\theta)$$
 公式 (备考)
应用 $v_N(\theta) = v_r(\xi) \cdot \cos \alpha$ 关系式, 且 $\alpha = \xi - \theta$,
有 $\left(\frac{v_N(\theta)}{c}\right)^2 = \frac{1}{n_e^2 \sin^2 \xi + n_o^2 \cos^2 \xi} \cos^2(\xi - \theta)$,
再应用 $\begin{cases} \cot \xi = \frac{n_e^2}{n_o^2} \cot \theta &$ 关系式
 $\cos^2(\xi - \theta) = (\cos \xi \cos \theta + \sin \xi \sin \theta)^2$,

转化为

$$\left(\frac{v_N}{c}\right)^2 = \frac{\left(\frac{n_e^2}{n_o^2}\cot\theta\cdot\cos\theta+\sin\theta\right)^2}{n_e^2 + \frac{n_e^4}{n_o^2}\cot^2\theta}$$
$$= \frac{\left(\frac{n_e^2}{n_o^2}\cos^2\theta+\sin^2\theta\right)^2}{n_e^2\sin^2\theta + \frac{n_e^4}{n_o^2}\cos^2\theta}$$
$$= \frac{n_e^4\left(\frac{\cos^2\theta}{n_o^2} + \frac{\sin^2\theta}{n_o^2}\right)^2}{n_e^4\left(\frac{\sin^2\theta}{n_e^2} + \frac{\cos^2\theta}{n_o^2}\right)}$$
$$= \left(\frac{\cos^2\theta}{n_o^2} + \frac{\sin^2\theta}{n_e^2}\right).$$

证毕。

* 速度面

人们为了形象地反映 $v_r(\xi)$ 、 $v_N(\theta)$ 各向异性,

在 三维空间中 画出速度面 ——

2个自由度用以标定方向,

1个自由度反映速度数值。

依旧 $v_N \leq v_r$.

* 值得注意

▶ 速度面的倒数面 即是 折射率面。

射线折射率 法线折射率 $n_r \equiv \frac{c}{v_r}$, $n_N \equiv \frac{c}{v_N}$ (1) 由 $v_r^2(\xi)$ 公式 得 $n_r^2(\xi) = n_o^2 \cos^2 \xi + n_e^2 \sin^2 \xi$, 它倒变成卵形了。 这里 $n_o = \frac{c}{v_o}$, $n_e = \frac{c}{v_e}$. (2) 由 $v_N^2(\theta)$ 公式 得 $n_N^2(\theta) = \frac{n_o^2 n_e^2}{n_e^2 \cos^2 \theta + n_o^2 \sin^2 \theta}$, 它倒符合椭圆了。 负晶体 $\int_{\frac{\alpha}{\beta}} \int_{\frac{\beta}{\beta}} \int_{\frac{\beta}{\beta}}$

图 8-17 折射率椭球面的画法

在三维空间中,法线折射率面便是

一个旋转椭球面。

不过,通常"转90⁰"画出。

- 4. 来自晶体光学的电磁理论的某些结论
 - (1)各向异性介质中, *D* # *Ē*,

晶体主轴方向(XYZ),有

 $D_{x} = \varepsilon_{x}E_{x}, \quad D_{y} = \varepsilon_{y}E_{y}, \quad D_{z} = \varepsilon_{z}E_{z}.$ $\overrightarrow{\mathbf{R}} \qquad \begin{pmatrix} D_{x} \\ D_{y} \\ D_{z} \end{pmatrix} = \begin{pmatrix} \varepsilon_{x} & 0 & 0 \\ 0 & \varepsilon_{y} & 0 \\ 0 & 0 & \varepsilon_{z} \end{pmatrix} \begin{pmatrix} E_{x} \\ E_{y} \\ E_{z} \end{pmatrix}$

(3) 能流密度矢量

 $\vec{S} = (\vec{E} \times \vec{H}) /\!\!/ \vec{r}$,

 $\overline{\Pi} \quad (\vec{D} \times \vec{H}) \not \parallel \vec{N}$,

图 8-18 (D,E,H)方向与(r,N)方向之关系

 $(\vec{D}, \vec{E}, \vec{N}, \vec{r})$ 共面

 $(\vec{Z}, \vec{N}, \vec{r})$ 共面

* 法线折射率椭球面的实际画法,

与*N* 正交方向 表明*D*方向;长 度取*n_N(θ*)数值。

这样,便赋予该图更丰富的物理内容。 在三维空间中,折射率*n_N(θ*)椭球面方程为

 $\frac{x^2}{n_o^2} + \frac{y^2}{n_o^2} + \frac{z^2}{n_e^2} = 1$, (单轴晶体)

* 一般折射率椭球及其应用

图 8-20 折射率椭球面及其应用

● 双轴晶体简介(**译见 岩 P** 390-392)

图 8-21 双轴晶体的波面在三个正交平面上的轨线

图 8-22

▶ 例题 4 —— 求斜入射、斜光轴时 e 光折射角

(祥见书 P.392-393)

8.3 晶体光学器件

• 晶体棱镜 • 波晶片 • 波晶片的选材

• 例题——剥离云母片的合适厚度 • 晶体补偿器

● 晶体棱镜

一般由两块按一定方式切割下来的 品体三 检镜 组合而成;从空间上 分离 o 光、e 光; 利用 其中一束光 用于起偏或检偏。

(1) 尼科耳棱镜 (Nicol prism)

改进型

图 8-24 例题 4—— 求 e 光折射角

黏合剂为加拿大树胶 $n_B \approx 1.55$ o 光满足全反射,即

(2) 渥拉斯顿棱镜(Wollaston prism)

图 8-25 沃拉斯顿棱镜

冰洲石 $(n_o > n_e)$

在第一个棱镜 在第二个棱镜

- 振动 $n_o \longrightarrow n_e$ (密 \longrightarrow 疏)
- ↓ 振动 n_e ____ n_o (疏 → 密)
- 一道习题 $\alpha=15^{\circ}$, $n_o = 1.65836$, $n_e = 1.48641$,

算得 (\vec{r}_1, \vec{r}_2) 夹角 $\Delta \theta \approx 5^0 18'$

注意 o 振动与 e 振动的命名仅在晶体中才有 意义。一旦离开晶体,进入各向同性介 质,就无所谓了。

—— 两束光 该分就分 该合就合。

(1) 一般描述

切割方式:厚度均匀,光轴平行界面。 使用条件:平行光正入射。 实际应用:旨在改变两个正交光扰动之间的相 位差 —— 光学和 8 器

(2) 说明: 相位变化

o 振动 $\varphi_o(B) = \varphi_o(A) - \frac{2\pi}{\lambda} n_o d$. e 振动 $\varphi_e(B) = \varphi_e(A) - \frac{2\pi}{\lambda} n_e d$.

于是,出射点相位差

$$\varphi_o(B) - \varphi_e(B) = \left[\varphi_o(A) - \varphi_e(A)\right] + \frac{2\pi}{\lambda}(n_e - n_o)d$$

即

其中,体内附加相位差

$$\delta' = \frac{2\pi}{\lambda} (n_e - n_o) d$$

注意 约定 $\delta = \varphi_o - \varphi_e$, $\varphi_y - \varphi_x$.

且 按物理上直接判定±号

—— 沿传播方向,相位逐点落后。

(3) 几种常用的波晶片

 λ_{4} 片、 λ_{2} 片、 λ 片 (3.1)当 $\delta' = -\frac{\pi}{2}$ 、 $-\frac{3}{2}\pi$ 、 $-\frac{5}{2}\pi$ 、...负晶体如此,

或 =+ $\frac{\pi}{2}$ 、+ $\frac{3\pi}{2}$ 、+ $\frac{5\pi}{2}$ 、... 正晶体如此, 写成 $\delta' = \pm (2k+1)\frac{\pi}{2}$, k = 0,1,2,...即 $\Delta n \cdot d = \pm (2k+1)\frac{\lambda}{4}$, " $\frac{\pi}{4}$ 片" 总之, 对于 $\frac{\pi}{4}$ 片, 其有效附加相位差为 $\delta'_{eff} = \pm \frac{\pi}{2}$, 这里 ±号, 并不对应"正负"晶体。 (3.2)当 $\Delta n \cdot d = \pm (2k+1)\frac{\lambda}{2}$ 时, " $\frac{\lambda}{2}$ 片" 有 $\delta' = \pm (2k+1)\pi$, k = 0,1,2,...总之, 对于 $\frac{\lambda}{2}$ 片,

 $\delta_{\scriptscriptstyle eff}' = \pi$.

(3.3) λ片(全波片),其厚度满足

 $\Delta n \cdot d = \pm k\lambda$, k = 1, 2, 3, ...即 $\delta' = \pm 2k\pi$, 于是 $\delta'_{eff} = 0$

* 说明 $\frac{\pi}{4}$ 片, $\frac{\lambda}{2}$ 片

用于产生圆偏光、椭圆偏光,或者用于改变光的偏振结构,或者用作偏振系统中的鉴测元件。 而 λ片,具有理论分析意义。

● 晶体补偿器 —— 可调相位延迟器

图 8-27 晶体补偿器

8.4 圆偏振光、椭圆偏振光的产生和检验

- 通过波晶片后的偏振态分析 圆偏振光的产生
- 区分圆偏振光与自然光 椭圆偏振光的产生
- 区分椭圆偏振光与部分偏振光

★ 回顾 & 复习

- (1) 五种宏观偏振态,分三组线偏光;自然光&圆偏光;部分偏振光&椭圆偏光
- (2) 两个正交振动的合成

$$\frac{E_x^2}{A_x^2} + \frac{E_y^2}{A_y^2} - 2\frac{E_x E_y}{A_x A_y} = \sin^2 \delta$$

其长短轴方位与数值为

$$A_{Max}^{2} = \frac{1}{2}(I_{x} + I_{y}) + \frac{1}{2}\sqrt{I_{x}^{2} + I_{y}^{2} + 2I_{x}I_{y}\cos 2\delta},$$

$$A_{Min}^{2} = \frac{1}{2}(I_{x} + I_{y}) - \frac{1}{2}\sqrt{I_{x}^{2} + I_{y}^{2} + 2I_{x}I_{y}\cos 2\delta},$$

$$\tan 2\theta_{0} = \frac{2A_{x}A_{y}}{A_{x}^{2} - A_{y}^{2}}\cos \delta$$

$$(I_{M} + I_{m} = I_{x} + I_{y}, \ \underline{\mathbb{B}}\ \underline{\mathcal{K}}\ \underline{\Omega}\ \underline{\mathcal{L}}\)$$

(3) 相位差δ决定椭圆形态

图 8-29

れ<i>i, 当振幅之一为0值, $A_x = 0$, 或 $A_y = 0$, 则相位差 δ 因素不起作用。

通过波晶片后的偏振态分析

图 8-30 考察偏振光通过波晶片后的偏振态

图 8-31 偏振光通过波晶片后的偏振态

*两个正交偏振片之间,波晶片取向的两个烤例:

(1)晶片光轴 // P₁ (透振方向),最终依然消光;

(2) 晶片光轴 $\perp \vec{P}_1$ (透振方向),最终依然消光。 实验:

尔后,插入 波晶片 一般 不消光;

旋转 波晶片 一周内 出现四次消光。

雄断,依然消光时,

只有(1) $\vec{e} \parallel \vec{P}_1$ 或(2) $\vec{e} \perp \vec{P}_1$,两种可能。 解决**7**:实际上元件不标明 \vec{e} 方向、 \vec{P} 方向, 人们却能确定两者的相对空间取向。

● 圆偏振光的产生

基于此,再旋转波片 $\frac{\pi}{4}$ 角度(顺时针或逆时 针),可获得 $A_e = A_o$,等振幅; 只要再初选用 $\frac{\pi}{4}$ 片插入,以获得 $\delta' = \pm \frac{\pi}{2}$,两 者合成 $\vec{E}_e(t) + \vec{E}_o(t)$,便成为一个

圆偏振光

* 若选用 $\frac{\pi}{4}$ 片,而避开" $\frac{\pi}{4}$ 转角",便可产生 一个 亚椭圆偏振光 相对于 (\bar{o},\bar{e}) 坐标架。

* 圆偏振光发生器

图 8-34 圆偏振器. (a) 右旋圆偏振器, (b) 左旋圆偏振器

● 如何区分 自然光与圆偏振光? 要借助 一个偏振片、一个7~4 波晶片 <u>ネ</u>片 - ▶插入 1/4 片后, (a) 转P,有消光现象。 え片 插入*™*/4 片后,转 (b) P,依然"等强度"。

图 8-35

说明(b):入射态(A)

出射态(B)

● 如何区分 部分偏振光与椭圆偏振光?
 (*译 见 お P* 402 - 403)

需要借助 两个偏振片 和 一个 $\pi/_4$ 片。

该实验方法之关键:

如何使入射的椭圆偏振光成为一个正椭圆 偏振光(在波晶片的(ē,ō)坐标架看来)。

8.5 偏振光干涉

•偏振光干涉装置和现象 •偏振光干涉概念和方法

•例题1——计算偏振光干涉系统输出光强

•显色偏振和偏振滤光器 •例题 2---利奥滤光器晶片厚度的选择

·偏振光干涉条纹——楔形晶片 •光测弹性 •会聚偏振光干涉 ● 基本装置

图 8-38 偏振光干涉装置. P₁,P₂ 为线偏振器,通常两者正交;C 为 波晶片或各向异性样品;S 为接收 屏(x,y)面

典型砚象

- (1) 转动P₂,一般情形,I₂随之变化。
- (2) 白光入射,出现色彩; P2转动,色彩变化,
- (3) 非均匀的各向异性样品置于其间,则出现干涉花样、彩色图样、图样色变。

两组问题

偏振态, 变化	自然先	A 銭偏光	B 不定?	线偏光
光 强 变化	I,	$I_{l} = \frac{I_{o}}{2}$	I,'≈I, 忽略扬耗	I2 不定 ?

可见,难点分明。

我们 正是选择 偏振光干涉法 求 I2.

图 8-39 用干涉法求解输出光强

- (1) 扰动 *A*₁ // *P*₁, 一次分解为 *A*_e, *A*_o; 再一次
 分解(投影)为(*A*_{2e}, *A*_{2o}) // *P*₂.
- (2) 两个扰动满足相干条件:

("同方向"条件,由第二个偏振片 P_2 给以保证;

"**稳定的构 位 关 系**",由第一个偏振片 P₁ 得以保证,如果自然光入射。

须知,自然光

其两个正交振动是无稳定相位差的。 [、]"同频"——来自同一光源同一谱线。

(3) 输出光强 I2——相干强度

 $I_2 = A_2^2 = A_{2e}^2 + A_{2o}^2 + 2A_{2e} \cdot A_{2o} \cos \delta_2 ,$

(3.1)振幅关系 $A_{2e} = A_1 \cos \alpha \cdot \cos \beta$

 $A_{2o} = A_1 \sin \alpha \cdot \sin \beta \, .$

注意:
$$A_1^2 = I_1 = \frac{1}{2}I_o$$

(3.2)相位差分析

$$\delta_2 = \delta_A + \delta' + \delta''$$

其中

$$\left\{ \begin{array}{l} \delta_A \ \lambda \sin A \ o \ \overline{k}$$
动与 e 振动 相位差.
若线偏振入射, $\delta_A = 0$ 或 π ;
若别的偏振态入射, $\delta_A = ($ 具体分析);
 $\delta' = \frac{2\pi}{\lambda} \Delta n \cdot d$, 各向异性 体内附加相位差;
 δ'' 是正交轴($\overline{o},\overline{e}$)向 P_2 方向投影引起的, 它
只有两种可能(取值)

 $\delta'' = \begin{cases} 0, \ \bar{o} \ \bar{e}$ 投影方向一致; $\pi, \ \bar{o} \ \bar{e}$ 投影方向相反。

于是 $I_2 = I_1 (\cos^2 \alpha \cdot \cos^2 \beta + \sin^2 \alpha \cdot \sin^2 \beta + 2\cos \alpha \cos \beta \sin \alpha \sin \beta \cdot \cos \delta_2)$ 可见 $I_2 (\alpha, \beta, \delta_2)$ ● 例题 $\alpha = \beta = \frac{\pi}{4}$, $f_1 I_2 = \frac{1}{2} (1 + \cos \delta_2) I_1$,

这有两种情况:

图 8-40 例题 1---- 求偏振光干涉系统输出光强

N	$P_1 \perp P_2$	P, 11 P2
	$\delta_2 = 0 + \delta' + \pi$	$\delta_2 = 0 + \delta' + 0$
· · · · · · · · · · · · · · · · · · ·	$I_2 = \frac{I_1}{2}(1 - \cos\delta')$	$I_2 = \frac{I_1}{2} (1 + \cos \delta')$
苦海牛台=	$I_2 = \frac{1}{2}I_1$	$I_2 = \frac{1}{2}I_1$
若之外、ら二元	$I_2 = I_1$	$\underline{I}_2 = O$
若入片. 5=0	$I_2 = O$	$I_z = I_1$
· 子片 5=43	$I_2 = \frac{3}{4}I_1$	$I_2 = / I_1$

* 偏振光干涉法被用以确定 斜椭圆的长短轴取向,及其光强 $I_M = I_m$. $\begin{cases} E_x = A_x \cos \omega t, \\ E_y = A_y \cos(\omega t + \delta) \end{cases}$ E知: $I_x \ I_y \ \delta, x: \theta_o \ I_M \ I_m, \end{cases}$ **解**: 用偏振光干涉方法求 $I(\alpha),$ $\Leftrightarrow \frac{dI(\alpha)}{d\alpha} = 0,$ Image: $I_M = \frac{2\sqrt{I_x I_y}}{I_x - I_y} \cos \delta$ $I_M = \frac{1}{2}(I_x + I_y) + \frac{1}{2}\sqrt{I_x^2 + I_y^2 + 2I_x I_y \cos 2\delta},$ $I_m = \frac{1}{2}(I_x + I_y) - \frac{1}{2}\sqrt{I_x^2 + I_y^2 + 2I_x I_y \cos 2\delta}$

具体计算:

$$\begin{split} I(\alpha) &= I_x \cos^2 \alpha + I_y \sin^2 \alpha + \sqrt{I_x \cdot I_y} \cdot \sin 2\alpha \cos \delta \\ &= \frac{1}{2} I_x (1 + \cos 2\alpha) + \frac{1}{2} I_y (1 - \cos 2\alpha) + \sqrt{I_x I_y} \sin 2\alpha \cos \delta \\ &= \frac{1}{2} (I_x + I_y) + \frac{1}{2} \underbrace{(I_x - I_y) \cos 2\alpha}_{a} + \underbrace{\sqrt{I_x I_y} \cos \delta}_{b} \cdot \underline{\sin 2\alpha} \\ &= \frac{1}{2} (I_x + I_y) + \sqrt{a^2 + b^2} \cdot \cos(2\alpha - \varphi) , \quad \varphi = \tan^{-1} \frac{b}{a} . \end{split}$$

$$\begin{split} & \mp \mathbb{E}, \quad \overset{\mathfrak{g}}{=} \frac{\varphi}{2} \, \mathfrak{W}, \quad \mathbf{f} I_M, \quad \mathbf{L} \mathfrak{K} \mathfrak{s} \mathfrak{R}; \\ &\alpha = \frac{\varphi}{2} \pm \frac{\pi}{2} \mathfrak{W}, \quad \mathbf{f} I_m, \quad \mathbf{L} \mathfrak{K} \mathfrak{s} \mathfrak{R}. \end{split}$$

上述创题的典型意义:

它是分析随后出现的各种偏振光干涉现象的基础,为理解那些问题提供一个基本的物理图像。

• 显色偏振(*chromatic polarization*) 突出 δ_2 变量, $I_2(\alpha, \beta, \underline{\delta_2})$, 其中, $\delta_2 = \delta_A + \delta' + \delta''$, 其中, $\delta' = \frac{2\pi}{\lambda} \Delta n \cdot d$

几何厚度 d (与波长无关)

折射率之差 $\Delta n = (n_e - n_o)$, 随波长变化甚

小,忽略这一影响。

于是 $\delta' \propto \frac{1}{\lambda}$.

(说到底,是相位差决定干涉项)
 白光入射:

 ^{转动}
 _{P1} ⊥ P2
 _{P1} ∥ P2

 紫_{λ=400nm} 若δ'=2π~λ片 → 紫滴 紫殘

* 偏振滤光器 —— 利奥滤色器 (Lyot filter)

$$A_{1} \rightarrow \left[p_{1} \cdot c_{1} \cdot p_{2} \cdot c_{2} \cdot \dots p_{6} \cdot c_{6} \cdot p_{7}\right]$$

$$\rightarrow A_{7} = A_{1} \cos \frac{\delta_{1}}{2} \cdot \cos \frac{\delta_{2}}{2} \dots \cos \frac{\delta_{6}}{2}$$

$$\delta_{6} = 2\delta_{5} = 2^{2}\delta_{4} = 2^{3}\delta_{3} = 2^{4}\delta_{2} = 2^{5}\delta_{1},$$

$$\delta_{1} = 2\pi d_{1}\Delta n \frac{1}{\lambda} = 2\beta_{1},$$

$$\beta_{1} = \pi d_{1}\Delta n \frac{1}{\lambda}.$$

这输出光振幅 A7 之连乘积可并和为

$$A_7 = A_1 \frac{1}{N} \cdot \frac{\sin N\beta}{\sin \beta}$$
, $N = 2^6$.

于是,在谱空间——以波数 1/2 为横坐标,显现

若干离散的尖脉冲——送频放应。

水晶且 转动 $P_2 \perp P_1 \longrightarrow P_2 // P_1$ $(n_o < n_e)$ 有亮纹 \longrightarrow 暗纹暗纹 \longrightarrow 亮纹暗纹 \longrightarrow 亮纹

定出∆n.

● 进一步理解:

如果, 无P₂, 则无条纹。

在楔形晶片→→ 偏振片P2之空间中

出现什么场景(光场)?

存在 两束平行光,

不同传播方向, Δθ小角;

不同线偏振方向,几乎正交;

故非相干,如果没有*P*₂. 有偏振片*P*₂,实现了两束平行光的干涉, 回忆"条纹间距"公式,

$$\Delta x = \frac{\lambda}{\sin \theta_1 + \sin \theta_2}$$
, $\wedge fightharpoonup \Delta x \approx \frac{\lambda}{\Delta \theta}$.

目前 $\Delta \theta = \theta_e - \theta_o = (n_e - 1)\alpha - (n_o - 1)\alpha = (n_e - n_o)\alpha$,

$$\exists \mu \qquad \Delta x = \frac{\lambda}{(n_e - n_o) \cdot \alpha}$$

● 光测弹性 (photoelasticity)

用偏振光干涉花样测试

各向异性的非均匀性 $\Delta n(x, y)$ — 体现了透明模板内部应力分布 $\frac{2\pi}{\lambda}\Delta n(x, y) \cdot d = \delta'(x, y) \leftrightarrow I_2(x, y)$ 应用工程结构 • 模型 • 模拟实验

* 偏振干涉仪 也被用于显示

各向同性介质(样品)的非均匀性: 火焰气流、风洞气流。

* 偏光显微镜

● 会聚偏振光干涉(**徉 & ぉ** p 411 - 413)

图 8-45 会聚偏振光干涉装置和图样.(a)光路布局,(b)定量说明,(c)单轴晶体方解石干涉图样, 晶体表面垂直光轴,(d)双轴晶体霞石干涉图样,晶体表面垂直两条光轴的分角线

- 8.6 旋光性
 - 旋光现象和规律 旋光晶体中的波面 旋光性的说明
 - 菲涅耳复合棱镜和科纽棱镜 法拉第效应——磁致旋光
 - 磁致旋光的经典解释 旋光性与生物活性

● 石英的旋光现象

图 8-46 旋光性实验演示

 $P_1 \perp P_2$, $I_2 \neq 0$, 不消光,

转*P*₂, ψ角度, 却再现消光, *I*₂=0. 这说明: 从石英晶片出射的依然是线偏振光,

其偏振面却有了旋转。

- * 实验规律
 - (1) ψ∝d,
 固体 ψ=αd, 旋光率α (度/mm);
 液体 ψ=[α]Nd, 糖溶液 "量 糖术"
 比旋光率[α] (度/(g ⋅ cm⁻³ ⋅ dm)).
 - (2) 旋光色散 重量浓度 $N(g_{cm^3})$

$$\alpha \propto \frac{1}{\lambda^2}$$
.

(3) 自然旋光性与光的传播方向无关

于是 $\vec{E}_A = \vec{E}_A$, 照样通过偏振片 P.

• 旋光晶体中的波面 (Σ_R,Σ_L)

球坐标架上局部 正交矢 $(\vec{u}, \vec{v}, \vec{r})$ *ū*:子午面切线方向, 内波面(慢波面), *v*:纬度面切线方向。 $(\vec{z}, \vec{u}, \vec{r})$ 共面 —— 主平面.

外波面 (快波面) 其椭圆偏光的 长轴⊥主平面; 其椭圆偏光的 长轴//主平面.

● 旋光性的说明

(1)对于旋光晶体,沿其光轴方向的两个特征
 振动是 左旋、右旋圆偏振光, *Ē*_L(*t*)、*Ē*_R(*t*);
 于是 入射的线偏振光,应当被分解为

 $\vec{E}_L(t) \stackrel{L}{\rightrightarrows} \vec{E}_R(t)$.

 $B = \vec{E}(t) = \vec{E} \cos \omega t$

$$= \vec{E}_{L}(t) + \vec{E}_{R}(t) ,$$

$$\begin{cases} E_{R} = E_{L} = \frac{E}{2} ,\\ \omega_{R} = \omega_{L} = \omega . \end{cases}$$

左旋和右旋圆偏振

任何时刻

 $\vec{E}_{R}(t)$ 与 \vec{E}_{L} 之夹角的平分线方向, 即为 合矢量 $\vec{E}(t)$ 的偏振方向。

(2) 它俩 在晶体中传播速度各不相同,

 $v_R \neq v_L$,

或
$$n_R = \frac{C}{v_R} \neq n_L = \frac{C}{v_L}$$
,

于是,光程不等,

 $n_R \cdot d \neq n_L \cdot d$

相位落后值不同,

$$\varphi_R(B) = \varphi_R(A) - \frac{2\pi}{\lambda} n_R d ,$$
$$\varphi_L(B) = \varphi_L(A) - \frac{2\pi}{\lambda} n_L d$$

(3) 对于圆偏振光 相位滞后 意味着什么?这涉及 圆偏振光传播的空间图像。

图 8-53 圆偏振光波列的空间图像.(a) 左旋圆偏振光矢量随时间变化 E(t) 在 z=z₀ 处,(b) 左旋圆偏振光矢量随空
 10 分布 E(z) 在 t=t₀ 时刻,呈现右旋螺线状,(c) 线偏振光空间波列图像作为参考

总之,

ね ⋳ 落 后 <==⇒ 命 度 倒 ٤
(指 同一时刻 圆偏振光的空间图像)
(4) 解释了 旋光现象

图 8-54 说明旋光性

设 R 光为快光,

有 $\alpha_L = \frac{2\pi}{\lambda} n_L d$ (右转); $\alpha_R = \frac{2\pi}{\lambda} n_R d$ (左转); $n_L > n_R$,

合成结果, 电矢量空间转角为

右旋 $\psi_R = \frac{1}{2}(\alpha_L - \alpha_R) = \frac{\pi}{\lambda}(n_L - n_R)d$, 反之, 左旋 $\psi_L = \frac{1}{2}(\alpha_R - \alpha_L) = \frac{\pi}{\lambda}(n_R - n_L)d$. 总之,

右(左)旋晶体中,右(左)旋光传播速度快。

从而,

▲论证了实验结果 $\psi \propto d$;

▲推断出 旋光率 $|\alpha| = \frac{\pi}{\lambda} |n_R - n_L|$

注意 在旋光晶体内部 ——

处处依然是 线偏振光,

只不过,线偏振方向逐点偏转;

同时,线偏振之间有相位差。对此

仔细理论计算表明(沿z方向传播),

$$\varphi(z) = \varphi_o - \frac{2\pi}{\lambda_o} \overline{n} \cdot z ,$$
$$\overline{n} = \frac{1}{2} (n_L + n_R) .$$

左、右旋 石英 棱镜 交替串接

理解(要点)

对于R棱镜, R旋光为快光,

 $n_R < n_L$;

对于L棱镜, L旋光为快光,

 $n'_L < n'_R$;

而旋光异构体,数值上 $n'_L = n_R$, $n'_R = n_L$, 于是,

$$\begin{cases}
R 旋光, $M n_R \xrightarrow{R'_L} n'_R, M$ 光疏 → 光密;
再 $M n'_R \xrightarrow{L'_R} n_R, M$ 光密 → 光疏;
结果, R 旋光越来越偏向下方,
L 旋光 (照此分析)$$

结果, L旋光越来越偏向上方。

图 8-56 磁致旋光实验装置

首先,1845年,发现 强磁场/玻璃 有这种效应。 **实 验规律** ——

(1)转角 $\Psi \propto B \cdot l$, $\Psi = VBl$

其中 维尔德常数 V (度/Gs·cm)

物 质	温度 t/C	$V/(') \cdot \mathrm{T}^{-1} \cdot \mathrm{m}^{-1}$
水	20	1. 31×10 ⁴
磷酸冕牌玻璃	18	1.61×10^{4}
轻火石玻璃	18	3.17×10^{4}
二硫化碳	20	4.23×104
磷	33	13.26×10^{4}
水晶(与轴垂直)	20	1.66×10^{4}
丙酮	15	1.109×10^{4}
食盐	16	3.585×10^{4}
乙醇	25	1.112×10^{4}
二氧化碳		9.39
空气(1标准大气压)	0	6. 27
$NH_4Fe(SO_4)_2 \cdot 12H_2O$		-5.8×10^{2}

表 8.1 磁致旋光的韦尔代常数值 (对钠黄光 5893 Å 而言)

(2)一般为左旋, 当*B* // *r*, 个别为右旋。

(3)法拉第磁致旋光的"不可逆性":

若 r ∥ B, 产生左旋,

则 疗∥(-B),反平行时,便是右旋。

这一性质与自然旋光不同。

▲磁光隔离器(应用<3>性质)

(a) 旋转角度加倍

(b) 磁光隔离器

图 8-57 **磁致旋光的不可逆性** 若 *a*→*b*,左旋; *b*→*a*,则 右旋。 于是 来回往返、偏振面偏转角度

 $\Psi = 2\psi_1$.

调整 B (高斯数), l (螺线管长度),

使 $\psi_1 = 45^\circ$, 则 $\Psi = 90^\circ$.

磁致旋光的微观解释

图 8-58

在 \vec{B} 导致的洛仑兹力 $\vec{f} = (-e)\vec{v} \times \vec{B}$ 作用下,电子的左旋、右旋角速度将有微小变化,

 $\omega_L = \omega + \Delta \omega$, $\omega_R = \omega - \Delta \omega$, 分别激发左旋、右旋光波(次波), 由于色散效应, $n(\omega)$, 有两条色散曲线 $n_L(\omega) \neq n_R(\omega)$

 $n_L < n_R$ (一般如此)

即 传播速度 *v_L > v_R*, 从而 造成 偏振面旋转

$$\Psi_L = \frac{\pi}{\lambda} (n_R - n_L) \cdot l$$

法拉第效应与塞曼效应 有密切关系。

● 旋光性与生物活性(详见书 423-424 页)

- 8.7 电光效应 (electro-optic effect)
 - 克尔效应——平方电光效应 例题——克尔效应的半波电压
 - 泡克耳斯效应——线性电光效应

图 8-59

实验上发现

• 半波电压 U_{half} 满足 $\delta' = \pi$,

即 $U_{half} \approx \frac{d}{\sqrt{2kl}}$, 上例 $U_{half} \approx 3 \times 10^4 V$ 应用于 (1) 光闸、高速开关,

迟豫时间极短 $\tau \sim 10^{-9}$ 秒. $\begin{cases} U = 0 \qquad I = 0 \quad (关) \\ \downarrow \qquad \downarrow \\ U_{half} \qquad I = I_M \quad (\mathcal{T}) \end{cases}$ (2) 电光调制 $U(t) - E(t) - \delta'(t) - I(t)$

即 输出光强 I(U(t)), 根据需要设定U(t)。

 $P_1 \perp P_2$ 条件

U = 0时, $I_2 = 0$, 仍为单轴晶体, $U \neq 0$ 时, $I_2 \neq 0$, 变为双轴晶体,

表现为

 \vec{E}_x 、 \vec{E}_y 光扰动,有不同的传播速度 $n_x \neq n_y$, $\Delta n = n_x - n_y$,

实验发现 $\Delta n \propto E$

(线性,电极倒向, $\Delta n \, \mathfrak{T} \pm \mathfrak{S}$) 于是 $\delta' = \frac{2\pi}{\lambda} \Delta n \cdot d$

 $\propto E \propto U$

也可被应用于电光调制

$$I_2 = \frac{1}{2} (1 - \cos \delta') I_1 \xrightarrow{\vec{E}} I_2 (E(t))$$

8.8 偏振的矩阵表示

偏振态的矩阵表示——琼斯矢量
 偏振器的矩阵表示——
 琼斯矩阵
 · 例题——检验琼斯矩阵
 · 结语

● 偏振态的矩阵表示 —— 琼斯矢量

光是一种横波,其光矢量 \vec{E} 在横平面上有两个自由度,相应地有两个正交分量 $E_x(t)$ 和 $E_y(t)$,它俩之间某种确定的振幅关系和相位关系对应着一种相干的偏振态q,它可用一个二元矩阵表示之,

$$\boldsymbol{\mathcal{P}} = \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} E_x(t) \\ E_y(t) \end{bmatrix} = \begin{bmatrix} A_x e^{i\omega t} \\ A_y e^{i(\omega t + \delta)} \end{bmatrix},$$

略去公因子 e^{iwt},偏振态被简明地表示为

$$\boldsymbol{\mathcal{P}} = \begin{bmatrix} A_x \\ A_y e^{i\delta} \end{bmatrix},$$

它亦称作琼斯矢量 (*Jones vectors*),其中 δ 表示 扰动 $E_y(t)$ 超前 $E_x(t)$ 的相位差。表 8.8 列出若干 典型偏振态的琼斯矢量。

偏振态	琼斯矢量	偏振态	琼斯矢量
y x	$\mathscr{P}_{ll}\begin{bmatrix}1\\0\end{bmatrix}$		$\mathscr{P}_{-45^{\circ}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix}$
	$\mathscr{P}_{\perp} \begin{bmatrix} 0\\1 \end{bmatrix}$		$\mathscr{P}_{R} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$
	\mathscr{P}_{45} . $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$		$\mathscr{P}_{L} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -i \end{bmatrix}$

表 8.2

● 偏振器的矩阵表示 —— 琼斯矩阵

凡改变光偏振态的器件统称为偏振器,它 将入射光的偏振态 *P*₁ 改变为出射光的偏振态 *P*₂,即

$$\mathcal{P}_1 = \begin{bmatrix} A_1 \\ B_1 \end{bmatrix} \longrightarrow \mathcal{P}_2 = \begin{bmatrix} A_2 \\ B_2 \end{bmatrix},$$

这一线性变换或操作可通过一个(2×2)矩阵J 来完成,即

$$\begin{aligned} \boldsymbol{\varphi}_{2} &= J \boldsymbol{\varphi}_{1}, \\ \begin{bmatrix} A_{2} \\ B_{2} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} A_{1} \\ B_{1} \end{bmatrix}, \quad J = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}. \end{aligned}$$

矩阵 J 常称作琼斯矩阵 (Jones matrix)。此矩阵 方程的展开式为一个二元线性联立方程

$$\begin{cases} A_2 = a_{11}A_1 + a_{12}B_1, \\ B_2 = a_{21}A_1 + a_{22}B_1. \end{cases}$$

(1) 线偏振器其透振方向沿 x 轴水平,

(2) 线偏振器其透振方向沿 y 轴垂直,

$$\Rightarrow J_{\perp} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

(3) 线偏振器其透振方向分别沿±45⁰方向,

 $\Rightarrow J_{45^{*}} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \Rightarrow J_{-45^{*}} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

(4) λ_4 波晶片其快轴沿 x 轴水平,

	$\rightarrow I$	[1	0
\mathbb{W}		- Lo	— i _

(5) λ_4 波晶片其快轴沿 y 轴垂直,

这里说, λ_4 波晶片的快轴沿 *x* 轴,指称 $E_x(t)$ 振动超前 $E_y(t)$ 振动 $\pi/2$;若快轴沿 *y* 轴方向,指称 $E_y(t)$ 振动超前 $E_x(t)$ 振动 $\pi/2$.

(6) 圆偏振发生器。

在光学技术中,常将线偏振片与 λ_4 晶片叠 在一起而形成一个圆偏振光发生器,只要组装 时保证偏振方向与晶片光轴之夹角为45°。当然, 在使用这圆偏振器时应将其偏振片面对入射 光,这时的出射光必定是圆偏振光,不论入射 光是何种偏振态,现在让我们导出圆偏振器的 琼斯矩阵 J_R 和 J_L 。设圆偏振器中的偏振片为 J_{45^0} ,而 λ_4 晶片的快轴在*y*轴方向,即其琼斯 矩阵为 J_{qy} ,则它为右旋圆偏振器,表示为

 $J_{R} = J_{qy} \cdot J_{45^{0}} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ i & i \end{bmatrix}.$

同理,得左旋圆偏振器的琼斯矩阵为

 $J_{L} = J_{qx} \cdot J_{45^{0}} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -i & -i \end{bmatrix}.$

以上两式的结果是按矩阵乘法规则而得来的。 两个矩阵乘法规则是

 $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} (a_{11}b_{11} + a_{12}b_{21}) & (a_{11}b_{12} + a_{12}b_{22}) \\ (a_{21}b_{11} + a_{22}b_{21}) & (a_{21}b_{12} + a_{22}b_{22}) \end{bmatrix}$

● 结语

以上例题旨在体现矩阵表示在分析偏振问 题中的运用,它们并未充分表现出偏振矩阵表 示的优越性。如果一偏振光 @,先后通过4个偏 振器,则出射光的偏振态表示为

 $\boldsymbol{\mathcal{P}} = \boldsymbol{J}_4 \boldsymbol{J}_3 \boldsymbol{J}_2 \boldsymbol{J}_1 \cdot \boldsymbol{\mathcal{P}}_1$

即通过一次次的矩阵乘积运算而最终求得出射 光的琼斯矢量,这可以由一个合适的计算元件 在电脑中快速完成。这也许是偏振的琼斯矩阵 表示法的一个主要优越性。